The linear scalarizations and Lagrange multipliers for vector optimization
نویسندگان
چکیده
منابع مشابه
The Theory of Discrete Lagrange Multipliers for Nonlinear Discrete Optimization
In this paper we present a Lagrange-multiplier formulation of discrete constrained optimization problems, the associated discrete-space first-order necessary and sufficient conditions for saddle points, and an efficient first-order search procedure that looks for saddle points in discrete space. Our new theory provides a strong mathematical foundation for solving general nonlinear discrete opti...
متن کاملThe Linear Nonconvex Generalized Gradient and Lagrange Multipliers
A Lagrange multiplierrules that uses small generalized gradients is introduced. It includes both inequality and set constraints. The generalized gradient is the linear generalized gradient. It is smaller than the generalized gradients of Clarke and Mordukhovich but retains much of their nice calculus. Its convex hull is the generalized gradient of Michel and Penot if a function is Lipschitz. Th...
متن کاملSupport Vector Machine Lagrange Multipliers and Simplex Volume Decompositions
The Support Vector Machine (SVM) idea has attracted recent attention in solving classiication and regression problems. As an example based method, SVMs distinguish two point classes by nding a separating boundary layer, which is determined by points that become known as Support Vectors (SVs). While the computation of the separating boundary layer is formulated as a linearly constrained Quadrati...
متن کاملLagrange multipliers for set - valued optimization problems associated with coderivatives ✩
In this paper we investigate a vector optimization problem (P) where objective and constraints are given by set-valued maps. We show that by mean of marginal functions and suitable scalarizing functions one can characterize certain solutions of (P) as solutions of a scalar optimization problem (SP) with single-valued objective and constraint functions. Then applying some classical or recent res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SCIENTIA SINICA Mathematica
سال: 2020
ISSN: 1674-7216
DOI: 10.1360/n012019-00042